Below you will find a list of seminars organised by ICTQT.
(click on Abstract to expand the text)
Speaker: Kai Sheng Lee
Abstract
Quantum mechanics is at its hearts the study of nature at the fundamental level of atoms and subatomic particles. Made up of these same atoms and subatomic particles, biological systems are also expected to follow quantum mechanics to some extent. The most well-known example (and still debated) is in magnetoreception, where some animals are thought to use magnetically sensitive chemical dynamics as compasses to obtain directional information from the Earth’s magnetic field. This process involves the electron spins and quantum coherences of the intermediate “radical pairs” reactants. I will give an overview of two experiments performed that investigate quantum effects in animals. Firstly, we show that the magnetic sensitivity of Periplaneta americana, the American cockroach, confirmed in behavioural experiments is most likely based on the radical pair compass. In the second experiment, we describe measurements on a qubit-qubit-tardigrade system and observe a coupling between the animal in the tun state and a qubit. Further steps and quantum state tomography on the total system shows non-zero tripartite entanglement. Finally, the tardigrade was shown to properly revive after being placed back at room temperature water. The two experiments show that biological systems can be bridged with quantum mechanics and will be relevant in probing the limits of quantum to classical transitions.Speaker: Julio de Vicente (Universidad Carlos III de Madrid)
Abstract
The study of entanglement and nonlocality in multipartite quantum states plays a major role in quantum information theory and genuine multipartite entanglement (GME) and nonlocality (GMNL) signal some of its strongest forms for applications. However, their characterization for general (mixed) states is a highly nontrivial problem and its experimental preparation faces the formidable challenge of controlling quantum states with many constituents. In this talk I introduce a subclass of multipartite states, which I term pair-entangled network (PEN) states, as those that can be created by distributing exclusively bipartite entanglement in a connected network, and I study how their entanglement and nonlocality properties are affected by noise and the geometry of the graph that provides the connection pattern. The motivation is twofold. First, this class represents arguably the most feasible way to prepare GME and GMNL states in practice. Second, the class of PEN states provides an operationally motivated subset of multipartite states in which the well-developed theory of bipartite entanglement can be exploited to analyze entanglement in the multipartite scenario. I will show that all pure PEN states are GME and GMNL independently of the amount of entanglement shared and the network (as long as it is connected). In contrast, in the case of mixed PEN states these properties depend both on the level of noise and the network topology and they are not guaranteed by the mere distribution of mixed bipartite entangled states. In particular, the amount of connectivity in the network determines whether GME is robust to noise for any system size or whether it is completely washed out under the slightest form of noise for a sufficiently large number of parties. This latter case implies fundamental limitations for the application of certain networks in realistic scenarios, where the presence of some form of noise is unavoidable. In addition to this, if time allows, to illustrate the applicability of PEN states to study the complex phenomenology behind multipartite entanglement I will present three more results which use them as a proof ingredient: (i) all pure GME states are GMNL in the multiple-copy scenario, (ii) GMNL can be superactivated for any number of parties, and (iii) the set of GME-activatable states can be characterized as those states that are not partially separable.Speaker: Flaminia Giacomini
Abstract
In physics, observations are typically made with respect to a frame of reference. Although reference frames are usually not considered as degrees of freedom, in practical situations it is a physical system that constitutes a reference frame. Can a quantum system be considered as a reference frame and, if so, which description would it give of the world? In the talk, I will introduce a general method to associate a reference frame to a quantum system, which generalises the usual reference frame transformation to a “superposition of coordinate transformations”. Such quantum reference frames transformations imply that the notion of entanglement and superposition are not given a priori, but depend on the choice of the quantum reference frame even in a non-relativistic setting. Quantum reference frames could be a useful tool at the intersection of gravity and quantum theory: for instance, they allow one to generalise Einstein’s equivalence principle to superpositions of gravitational fields, and to describe the behaviour of quantum clocks ticking in a superposition of times relative to one another.Speaker: Marcin Markiewicz ( University of Gdańsk )
Abstract
Recently there appeared many works on modified Wigner’s Friend paradoxes, which suggest that quantum theory cannot consistently describe the scenario with many observers. In this presentation I will show an alternative approach to this problem, which indicates that the paradoxes are in fact apparent, and the source of confusion is the undefined status of the measurement process. The talk will be based on recently published work “Physics and Metaphysics of Wigner’s Friends: Even Performed Premeasurements Have No Results” by Marek Żukowski and Marcin Markiewicz, Phys. Rev. Lett. 126, 130402 (2021).Speaker: Piotr Kopszak
Abstract
Port-based teleportation (PBT) is a quantum teleportation protocol, in which the parties exploit joint measurements performed on $N$ shared $d$-dimensional maximally entangled pairs (the resource) and the state to be teleported, with the addition of the one-way classical communication. The lack of correction in the last step is an essential feature distinguishing PBT from standard quantum teleportation. In my talk I shall consider the idea of entanglement recycling, i.e. the repeated use of the same resource for multiple rounds of PBT. The question is how the resource degrades after one or multiple uses. To answer it, we analyse the structure of the measurement employed in the protocol (the square-root-measurement, to be precise), depending greatly on the symmetries present in the system. In particular, as the result we evaluate its roots and compositions. These findings allow us to present the explicit formula for the recycling fidelity involving only group-theoretic parameters describing irreducible representations of the symmetric group $S(n)$. Additionally, I shall present the analysis of the resource degradation in the optimal PBT.Zoom link : https://zoom.us/j/94361414308?pwd=cC8xaTNBd290Rzk1TUgrZzZhcWczUT09