Publications

Peer-reviewed publications

  1. Selby, John H., Carlo Maria Scandolo, i Bob Coecke. „Reconstructing Quantum Theory from Diagrammatic Postulates”. Quantum 5 (April 28th, 2021): 445. https://doi.org/10.22331/q-2021-04-28-445.
  2. Markiewicz, Marcin, i Janusz Przewocki. „On construction of finite averaging sets for SL (2, C) via its Cartan decomposition”. Journal of Physics A: Mathematical and Theoretical, April 21st, 2021. https://doi.org/10.1088/1751-8121/abfa44.
  3. Miklin, Nikolai, i Michał Oszmaniec. „A Universal Scheme for Robust Self-Testing in the Prepare-and-Measure Scenario”. Quantum 5 (April 6th, 2021): 424. https://doi.org/10.22331/q-2021-04-06-424.
  4. Żukowski, Marek, and Marcin Markiewicz. „Physics and Metaphysics of Wigner’s Friends: Even Performed Premeasurements Have No Results”. Physical Review Letters 126, nr 13 (April 2nd 2021): 130402. https://doi.org/10.1103/PhysRevLett.126.130402.
  5. Goldberg, Aaron Z., Pablo de la Hoz, Gunnar Björk, Andrei B. Klimov, Markus Grassl, Gerd Leuchs, and Luis L. Sánchez-Soto. „Quantum Concepts in Optical Polarization”. Advances in Optics and Photonics 13, nr 1 (March 31st, 2021): 1. https://doi.org/10.1364/AOP.404175.
  6. Karthik, H. S., H. Akshata Shenoy, i A. R. Usha Devi. „Leggett-Garg Inequalities and Temporal Correlations for a Qubit under PT -Symmetric Dynamics”. Physical Review A 103, nr 3 (March 17th, 2021): 032420. https://doi.org/10.1103/PhysRevA.103.032420.
  7. Lipka-Bartosik, Patryk, Paweł Mazurek, i Michał Horodecki. „Second Law of Thermodynamics for Batteries with Vacuum State”. Quantum 5 (March 10th, 2021): 408. https://doi.org/10.22331/q-2021-03-10-408.
  8. Uola, Roope, Tristan Kraft, Sébastien Designolle, Nikolai Miklin, Armin Tavakoli, Juha-Pekka Pellonpää, Otfried Gühne, i Nicolas Brunner. „Quantum Measurement Incompatibility in Subspaces”. Physical Review A 103, nr 2 (February 5th 2021): 022203. https://doi.org/10.1103/PhysRevA.103.022203.
  9. Tavakoli, Armin, Máté Farkas, Denis Rosset, Jean-Daniel Bancal, i Jedrzej Kaniewski. „Mutually Unbiased Bases and Symmetric Informationally Complete Measurements in Bell Experiments”. Science Advances 7, nr 7 (February 2021): eabc3847. https://doi.org/10.1126/sciadv.abc3847.
  10. Schmid, David, John H. Selby, Elie Wolfe, Ravi Kunjwal, and Robert W. Spekkens. „Characterization of Noncontextuality in the Framework of Generalized Probabilistic Theories”. PRX Quantum 2, nr 1 (February 25th, 2021): 010331. https://doi.org/10.1103/PRXQuantum.2.010331.
  11. Miller, Tomasz, Michał Eckstein, Paweł Horodecki, i Ryszard Horodecki. „Generally Covariant N -Particle Dynamics”. Journal of Geometry and Physics 160 (February 2021): 103990. https://doi.org/10.1016/j.geomphys.2020.103990.
  12. Mironowicz, Piotr, Gustavo Cañas, Jaime Cariñe, Esteban S. Gómez, Johanna F. Barra, Adán Cabello, Guilherme B. Xavier, Gustavo Lima, i Marcin Pawłowski. „Quantum Randomness Protected against Detection Loophole Attacks”. Quantum Information Processing 20, nr 1 (January 2021): 39. https://doi.org/10.1007/s11128-020-02948-3.
  13. Guo, Qihao, Yuan-Yuan Zhao, Markus Grassl, Xinfang Nie, Guo-Yong Xiang, Tao Xin, Zhang-Qi Yin, and Bei Zeng. „Testing a Quantum Error-Correcting Code on Various Platforms”. Science Bulletin 66, nr 1 (January 2021): 29–35. https://doi.org/10.1016/j.scib.2020.07.033.
  14. Farkas, Máté, Nayda Guerrero, Jaime Cariñe, Gustavo Cañas, i Gustavo Lima. „Self-Testing Mutually Unbiased Bases in Higher Dimensions with Space-Division Multiplexing Optical Fiber Technology”. Physical Review Applied 15, nr 1 (January 15th, 2021): 014028. https://doi.org/10.1103/PhysRevApplied.15.014028.
  15. Łobejko, Marcin, Paweł Mazurek, and Michał Horodecki. „Thermodynamics of Minimal Coupling Quantum Heat Engines”. Quantum 4 (December 23rd 2020): 375. https://doi.org/10.22331/q-2020-12-23-375.
  16. Le, Thao P., Piotr Mironowicz, and Paweł Horodecki. „Blurred Quantum Darwinism across Quantum Reference Frames”. Physical Review A 102, nr 6 (December 22nd 2020): 062420. https://doi.org/10.1103/PhysRevA.102.062420.
  17. Knips, Lukas, Jan Dziewior, Waldemar Kłobus, Wiesław Laskowski, Tomasz Paterek, Peter J. Shadbolt, Harald Weinfurter, and Jasmin D. A. Meinecke. „Multipartite Entanglement Analysis from Random Correlations”. Npj Quantum Information 6, nr 1 (December 2020): 51. https://doi.org/10.1038/s41534-020-0281-5.
  18. Grassl, Markus. „Algebraic Quantum Codes: Linking Quantum Mechanics and Discrete Mathematics”. International Journal of Computer Mathematics: Computer Systems Theory, December 10th, 2020, 1–17. https://doi.org/10.1080/23799927.2020.1850530.
  19. Goldberg, Aaron Z., Andrei B. Klimov, Markus Grassl, Gerd Leuchs, i Luis L. Sánchez-Soto. „Extremal Quantum States”. AVS Quantum Science 2, nr 4 (December, 2020): 044701. https://doi.org/10.1116/5.0025819.
  20. Sudha, H. S. Karthik, Rajarshi Pal, K. S. Akhilesh, Sibasish Ghosh, K. S. Mallesh, i A. R. Usha Devi. „Canonical Forms of Two-Qubit States under Local Operations”. Physical Review A 102, nr 5 (November 23rd, 2020): 052419. https://doi.org/10.1103/PhysRevA.102.052419.
  21. Eckstein, Michał, and Paweł Horodecki. „The Experiment Paradox in Physics”. Foundations of Science, October 30th, 2020. https://doi.org/10.1007/s10699-020-09711-y.
  22. Sikora, Jamie, and John H. Selby. „Impossibility of Coin Flipping in Generalized Probabilistic Theories via Discretizations of Semi-Infinite Programs”. Physical Review Research 2, nr 4 (October 23rd, 2020): 043128. https://doi.org/10.1103/PhysRevResearch.2.043128.
  23. Chaturvedi, Anubhav, i Debashis Saha. „Quantum Prescriptions Are More Ontologically Distinct than They Are Operationally Distinguishable”. Quantum 4 (October 21st, 2020): 345. https://doi.org/10.22331/q-2020-10-21-345.
  24. Linowski, Tomasz, Clemens Gneiting, i Łukasz Rudnicki. „Stabilizing Entanglement in Two-Mode Gaussian States”. Physical Review A 102, nr 4 (October 16th, 2020): 042405. https://doi.org/10.1103/PhysRevA.102.042405.
  25. Sakarya, Omer, Marek Winczewski, Adam Rutkowski, i Karol Horodecki. „Hybrid Quantum Network Design against Unauthorized Secret-Key Generation, and Its Memory Cost”. Physical Review Research 2, nr 4 (October 5th, 2020): 043022. https://doi.org/10.1103/PhysRevResearch.2.043022.
  26. Hameedi, Alley, Breno Marques, Piotr Mironowicz, Debashis Saha, Marcin Pawłowski, and Mohamed Bourennane. „Experimental Test of Nonclassicality with Arbitrarily Low Detection Efficiency”. Physical Review A 102, nr 3 (September 21st, 2020): 032621. https://doi.org/10.1103/PhysRevA.102.032621.
  27. Selby, John H., i Ciarán M. Lee. „Compositional Resource Theories of Coherence”. Quantum 4 (September 11th, 2020): 319. https://doi.org/10.22331/q-2020-09-11-319.
  28. Tavakoli, Armin, Marek Żukowski, i Časlav Brukner. „Does Violation of a Bell Inequality Always Imply Quantum Advantage in a Communication Complexity Problem?” Quantum 4 (September 7th, 2020): 316. https://doi.org/10.22331/q-2020-09-07-316.
  29. Popescu, Sandu, Ana Belén Sainz, Anthony J. Short, i Andreas Winter. „Reference Frames Which Separately Store Noncommuting Conserved Quantities”. Physical Review Letters 125, nr 9 (August 24th, 2020): 090601. https://doi.org/10.1103/PhysRevLett.125.090601.
  30. Rudnicki, Ł., L. L. Sánchez-Soto, G. Leuchs, i R. W. Boyd. „Fundamental Quantum Limits in Ellipsometry”. Optics Letters 45, nr 16 (August 15th, 2020): 4607. https://doi.org/10.1364/OL.392955.
  31. Ramanathan, Ravishankar, Monika Rosicka, Karol Horodecki, Stefano Pironio, Michał Horodecki, and Paweł Horodecki. „Gadget Structures in Proofs of the Kochen-Specker Theorem”. Quantum 4 (August 14th, 2020): 308. https://doi.org/10.22331/q-2020-08-14-308.
  32. Groisman, Berry, Michael Mc Gettrick, Mehdi Mhalla, i Marcin Pawłowski. „How Quantum Information Can Improve Social Welfare”. IEEE Journal on Selected Areas in Information Theory 1, nr 2 (August 2020): 445–53. .
  33. Sainz, Ana Belén, Matty J. Hoban, Paul Skrzypczyk, i Leandro Aolita. „Bipartite Postquantum Steering in Generalized Scenarios”. Physical Review Letters 125, nr 5 (July 29th, 2020): 050404. https://doi.org/10.1103/PhysRevLett.125.050404.
  34. Roy, Saptarshi, Tamoghna Das, i Aditi Sen(De). „Computable Genuine Multimode Entanglement Measure: Gaussian versus Non-Gaussian”. Physical Review A 102, nr 1 (July 20th, 2020): 012421. https://doi.org/10.1103/PhysRevA.102.012421.
  35. Horodecki, Karol, Ryszard P. Kostecki, Roberto Salazar, i Michał Studziński. „Limitations for Private Randomness Repeaters”. Physical Review A 102, nr 1 (July 16th, 2020): 012615. https://doi.org/10.1103/PhysRevA.102.012615.
  36. Tóth, Géza, Tamás Vértesi, Paweł Horodecki, i Ryszard Horodecki. „Activating Hidden Metrological Usefulness”. Physical Review Letters 125, nr 2 (July 7th, 2020): 020402. https://doi.org/10.1103/PhysRevLett.125.020402.
  37. Pandya, Palash, Omer Sakarya, i Marcin Wieśniak. „Hilbert-Schmidt Distance and Entanglement Witnessing”. Physical Review A 102, nr 1 (July 7th, 2020): 012409. https://doi.org/10.1103/PhysRevA.102.012409.
  38. Rosicka, Monika, Paweł Mazurek, Andrzej Grudka, and Michał Horodecki. “Generalized XOR Non-Locality Games with Graph Description on a Square Lattice.” Journal of Physics A: Mathematical and Theoretical 53, no. 26 (July 3, 2020): 265302.
    https://doi.org/10.1088/1751-8121/ab8f3e.
  39. Wolfe, Elie, David Schmid, Ana Belén Sainz, Ravi Kunjwal, i Robert W. Spekkens. „Quantifying Bell: The Resource Theory of Nonclassicality of Common-Cause Boxes”. Quantum 4 (June 8th, 2020): 280. https://doi.org/10.22331/q-2020-06-08-280.
  40. Huber, Felix, and Markus Grassl. “Quantum Codes of Maximal Distance and Highly Entangled Subspaces.” Quantum 4 (June 18, 2020): 284.
    https://doi.org/10.22331/q-2020-06-18-284.
  41. Skrzypczyk, Paul, Matty J. Hoban, Ana Belén Sainz, and Noah Linden. “Complexity of Compatible Measurements.” Physical Review Research 2, no. 2 (June 5, 2020): 023292.
    https://doi.org/10.1103/PhysRevResearch.2.023292.
  42. Milz, Simon, Fattah Sakuldee, Felix A. Pollock, and Kavan Modi. “Kolmogorov Extension Theorem for (Quantum) Causal Modelling and General Probabilistic Theories.” Quantum 4 (April 20, 2020): 255.
    https://doi.org/10.22331/q-2020-04-20-255.
  43. Mazurek, Paweł, Máté Farkas, Andrzej Grudka, Michał Horodecki, and Michał Studziński. “Quantum Error-Correction Codes and Absolutely Maximally Entangled States.” Physical Review A 101, no. 4 (April 2, 2020): 042305.
    https://doi.org/10.1103/PhysRevA.101.042305.
  44. Linowski, Tomasz, Grzegorz Rajchel-Mieldzioć, and Karol Życzkowski. “Entangling Power of Multipartite Unitary Gates.” Journal of Physics A: Mathematical and Theoretical 53, no. 12 (March 27, 2020): 125303.
    https://doi.org/10.1088/1751-8121/ab749a.
  45. Pawłowski, Marcin. “Entropy in Foundations of Quantum Physics.” Entropy 22, no. 3 (March 24, 2020): 371.
    https://doi.org/10.3390/e22030371.
  46. Czartowski, Jakub, Dardo Goyeneche, Markus Grassl, and Karol Życzkowski. “Isoentangled Mutually Unbiased Bases, Symmetric Quantum Measurements, and Mixed-State Designs.” Physical Review Letters 124, no. 9 (March 5, 2020): 090503.
    https://doi.org/10.1103/PhysRevLett.124.090503.
  47. Smania, Massimiliano, Piotr Mironowicz, Mohamed Nawareg, Marcin Pawłowski, Adán Cabello, and Mohamed Bourennane. “Experimental Certification of an Informationally Complete Quantum Measurement in a Device-Independent Protocol.” Optica 7, no. 2 (February 20, 2020): 123.
    https://doi.org/10.1364/OPTICA.377959.
  48. Horodecki, Karol, and Maciej Stankiewicz. “Semi-Device-Independent Quantum Money.” New Journal of Physics 22, no. 2 (February 5, 2020): 023007.
    https://doi.org/10.1088/1367-2630/ab6872.
  49. Rosier, Anna de, Jacek Gruca, Fernando Parisio, Tamas Vertesi, and Wiesław Laskowski. “Strength and Typicality of Nonlocality in Multisetting and Multipartite Bell Scenarios.” Physical Review A 101, no. 1 (January 16, 2020): 012116.
    https://doi.org/10.1103/PhysRevA.101.012116.
  50. Szczygielski, Krzysztof, and Robert Alicki. “On Howland Time-Independent Formulation of CP-Divisible Quantum Evolutions.” Reviews in Mathematical Physics, January 14, 2020, 2050021.
    https://doi.org/10.1142/S0129055X2050021X.
  51. Ryu, Junghee, Bianka Woloncewicz, Marcin Marciniak, Marcin Wieśniak, and Marek Żukowski. “General Mapping of Multiqudit Entanglement Conditions to Nonseparability Indicators for Quantum-Optical Fields.” Physical Review Research 1, no. 3 (December 19, 2019): 032041.
    https://doi.org/10.1103/PhysRevResearch.1.032041.
  52. Horodecki, Paweł, and Ravishankar Ramanathan. “The Relativistic Causality versus No-Signaling Paradigm for Multi-Party Correlations.” Nature Communications 10, no. 1 (December 2019): 1701.
    https://doi.org/10.1038/s41467-019-09505-2.
  53. Yang, Dong, Karol Horodecki, and Andreas Winter. “Distributed Private Randomness Distillation.” Physical Review Letters 123, no. 17 (October 22, 2019): 170501.
    https://doi.org/10.1103/PhysRevLett.123.170501.
  54. Pozas-Kerstjens, Alejandro, Rafael Rabelo, Łukasz Rudnicki, Rafael Chaves, Daniel Cavalcanti, Miguel Navascués, and Antonio Acín. “Bounding the Sets of Classical and Quantum Correlations in Networks.” Physical Review Letters 123, no. 14 (October 3, 2019): 140503.
    https://doi.org/10.1103/PhysRevLett.123.140503.
  55. Kłobus, Waldemar, Adam Burchardt, Adrian Kolodziejski, Mahasweta Pandit, Tamas Vertesi, Karol Zyczkowski, and Wiesław Laskowski. “$k$-Uniform Mixed States.” Physical Review A 100, no. 3 (September 16, 2019): 032112.
    https://doi.org/10.1103/PhysRevA.100.032112.
  56. Van Himbeeck, Thomas, Jonatan Bohr Brask, Stefano Pironio, Ravishankar Ramanathan, Ana Belén Sainz, and Elie Wolfe. “Quantum Violations in the Instrumental Scenario and Their Relations to the Bell Scenario.” Quantum 3 (September 16, 2019): 186.
    https://doi.org/10.22331/q-2019-09-16-186.
  57. Mironowicz, Piotr, and Marcin Pawłowski. “Experimentally Feasible Semi-Device-Independent Certification of Four-Outcome Positive-Operator-Valued Measurements.” Physical Review A 100, no. 3 (September 6, 2019): 030301.
    https://doi.org/10.1103/PhysRevA.100.030301.
  58. Alicki, Robert. “Quantum Features of Macroscopic Fields: Entropy and Dynamics.” Entropy 21, no. 7 (July 18, 2019): 705.
    https://doi.org/10.3390/e21070705.
  59. Baio, Giuseppe, Dariusz Chruściński, Paweł Horodecki, Antonino Messina, and Gniewomir Sarbicki. “Bounds on the Entanglement of Two-Qutrit Systems from Fixed Marginals.” Physical Review A 99, no. 6 (June 11, 2019): 062312.
    https://doi.org/10.1103/PhysRevA.99.062312.
  60. Alicki, Robert. “A Quantum Open System Model of Molecular Battery Charged by Excitons.” The Journal of Chemical Physics 150, no. 21 (June 6, 2019): 214110.
    https://doi.org/10.1063/1.5096772.
  61. Dutta, Arijit, Tschang-Uh Nahm, Jinhyoung Lee, and Marek Żukowski. “Geometric Extension of Clauser–Horne Inequality to More Qubits.” New Journal of Physics 20, no. 9 (September 10, 2018): 093006.
    https://doi.org/10.1088/1367-2630/aadc78.

 

arXiv preprints

  1. Gachechiladze, Mariami, Nikolai Miklin, and Rafael Chaves. “Quantifying Causal Influences in the Presence of a Quantum Common Cause.” ArXiv:2007.01221 [Quant-Ph, Stat], July 2, 2020.
    http://arxiv.org/abs/2007.01221.
  2. Grassl, Markus. “Entanglement-Assisted Quantum Communication Beating the Quantum Singleton Bound.” ArXiv:2007.01249 [Quant-Ph], July 2, 2020.
    http://arxiv.org/abs/2007.01249.
  3. Schmid, David, John H. Selby, Matthew F. Pusey, and Robert W. Spekkens. “A Structure Theorem for Generalized-Noncontextual Ontological Models.” ArXiv:2005.07161 [Quant-Ph], May 14, 2020.
    http://arxiv.org/abs/2005.07161.
  4. Schmid, David, Thomas C. Fraser, Ravi Kunjwal, Ana Belén Sainz, Elie Wolfe, and Robert W. Spekkens. “Why Standard Entanglement Theory Is Inappropriate for the Study of Bell Scenarios.” ArXiv:2004.09194 [Quant-Ph], April 20, 2020.
    http://arxiv.org/abs/2004.09194.
  5. Łobejko, Marcin, Paweł Mazurek, and Michał Horodecki. “Thermodynamics of Minimal Coupling Quantum Heat Engines.” ArXiv:2003.05788 [Quant-Ph], April 1, 2020.
    http://arxiv.org/abs/2003.05788.
  6. Miklin, Nikolai, and Michał Oszmaniec. “A Universal Scheme for Robust Self-Testing in the Prepare-and-Measure Scenario.” ArXiv:2003.01032 [Quant-Ph], March 27, 2020.
    http://arxiv.org/abs/2003.01032.
  7. Maciejewski, Filip B., Zoltán Zimborás, and Michał Oszmaniec. “Mitigation of Readout Noise in Near-Term Quantum Devices by Classical Post-Processing Based on Detector Tomography.” ArXiv:1907.08518 [Quant-Ph], March 25, 2020.
    http://arxiv.org/abs/1907.08518.
  8. Żukowski, Marek, and Marcin Markiewicz. “Even Performed Pre-Measurements Have No Results.” ArXiv:2003.07464 [Quant-Ph], March 19, 2020.
    http://arxiv.org/abs/2003.07464.
  9. Ahmadi, Borhan, S. Salimi, and A. S. Khorashad. “Refined Definitions of Heat and Work in Quantum Thermodynamics.” ArXiv:1912.01983 [Quant-Ph], March 10, 2020.
    http://arxiv.org/abs/1912.01983.
  10. Ahmadi, Borhan, S. Salimi, and A. S. Khorashad. “No Entropy Production in Quantum Thermodynamics.” ArXiv:2002.10747 [Quant-Ph], February 25, 2020.
    http://arxiv.org/abs/2002.10747.
  11. Eckstein, Michał, Paweł Horodecki, Ryszard Horodecki, and Tomasz Miller. “Operational Causality in Spacetime.” ArXiv:1902.05002 [Gr-Qc, Physics:Math-Ph, Physics:Quant-Ph], February 5, 2020.
    http://arxiv.org/abs/1902.05002.
  12. Guo, Qihao, Yuan-Yuan Zhao, Markus Grassl, Xinfang Nie, Guo-Yong Xiang, Tao Xin, Zhang-Qi Yin, and Bei Zeng. “Testing a Quantum Error-Correcting Code on Various Platforms.” ArXiv:2001.07998 [Quant-Ph], January 22, 2020.
    http://arxiv.org/abs/2001.07998
  13. Groisman, Berry, Michael Mc Gettrick, Mehdi Mhalla, and Marcin Pawłowski. “How Quantum Information Can Improve Social Welfare.” ArXiv:1912.10967 [Quant-Ph], December 23, 2019.
    http://arxiv.org/abs/1912.10967.
  14. Song, Wooyeong, Youngrong Lim, Hyukjoon Kwon, Gerardo Adesso, Marcin Wieśniak, Marcin Pawłowski, Jaewan Kim, and Jeongho Bang. “Quantum Secure Probably-Approximately-Correct Learning.” ArXiv:1912.10594 [Quant-Ph], December 22, 2019.
    http://arxiv.org/abs/1912.10594.
  15. Das, Siddhartha, Stefan Bäuml, Marek Winczewski, and Karol Horodecki. “Universal Limitations on Quantum Key Distribution over a Network.” ArXiv:1912.03646 [Quant-Ph], December 8, 2019.
    http://arxiv.org/abs/1912.03646.
  16. Schmid, David, John Selby, Elie Wolfe, Ravi Kunjwal, and Robert W. Spekkens. “The Characterization of Noncontextuality in the Framework of Generalized Probabilistic Theories.” ArXiv:1911.10386 [Quant-Ph], November 23, 2019.
    http://arxiv.org/abs/1911.10386.
  17. Selby, John H., and Ciarán M. Lee. “Compositional Resource Theories of Coherence.” ArXiv:1911.04513 [Quant-Ph], November 11, 2019.
    http://arxiv.org/abs/1911.04513.
  18. Brod, Daniel Jost, and Michał Oszmaniec. “Classical Simulation of Linear Optics Subject to Nonuniform Losses.” ArXiv:1906.06696 [Math-Ph, Physics:Quant-Ph], November 10, 2019.
    http://arxiv.org/abs/1906.06696.
  19. Tavakoli, Armin, Marek Żukowski, and Časlav Brukner. “Does Violation of a Bell Inequality Always Imply Quantum Advantage in a Communication Complexity Problem?” ArXiv:1907.01322 [Quant-Ph], October 9, 2019.
    http://arxiv.org/abs/1907.01322.
  20. Wolfe, Elie, David Schmid, Ana Belén Sainz, Ravi Kunjwal, and Robert W. Spekkens. “Quantifying Bell: The Resource Theory of Nonclassicality of Common-Cause Boxes.” ArXiv:1903.06311 [Quant-Ph], September 6, 2019.
    http://arxiv.org/abs/1903.06311.
  21. Skrzypczyk, Paul, Matty J. Hoban, Ana Belén Sainz, and Noah Linden. “The Complexity of Compatible Measurements.” ArXiv:1908.10085 [Quant-Ph], August 27, 2019.
    http://arxiv.org/abs/1908.10085.
  22. Cirstoiu, Cristina, Kamil Korzekwa, and David Jennings. “Robustness of Noether’s Principle: Maximal Disconnects between Conservation Laws and Symmetries in Quantum Theory.” ArXiv:1908.04254 [Quant-Ph], August 12, 2019.
    http://arxiv.org/abs/1908.04254.
  23. Popescu, Sandu, Ana Belén Sainz, Anthony J. Short, and Andreas Winter. “Reference Frames Which Separately Store Non-Commuting Conserved Quantities.” ArXiv:1908.02713 [Quant-Ph], August 7, 2019.
    http://arxiv.org/abs/1908.02713.
  24. Sainz, Ana Belén, Matty J. Hoban, Paul Skrzypczyk, and Leandro Aolita. “Bipartite Post-Quantum Steering in Generalised Scenarios.” ArXiv:1907.03705 [Quant-Ph], July 8, 2019.
    http://arxiv.org/abs/1907.03705.
  25. Lipka-Bartosik, Patryk, Paweł Mazurek, and Michał Horodecki. “Second Law of Thermodynamics for Batteries with Vacuum State.” ArXiv:1905.12072 [Quant-Ph], May 28, 2019.
    http://arxiv.org/abs/1905.12072.
  26. Song, Wooyeong, Marcin Wieśniak, Nana Liu, Marcin Pawłowski, Jinhyoung Lee, Jaewan Kim, and Jeongho Bang. “A Classical-Quantum Hybrid Oracle Architecture for Boolean Oracle Identification in the Noisy Intermediate-Scale Quantum Era.” ArXiv:1905.05751 [Quant-Ph], May 14, 2019.
    http://arxiv.org/abs/1905.05751.
  27. Eckstein, Michał, and Paweł Horodecki. “The Experiment Paradox in Physics.” ArXiv:1904.04117 [Gr-Qc, Physics:Hep-Th, Physics:Physics, Physics:Quant-Ph], April 5, 2019.
    http://arxiv.org/abs/1904.04117.
  28. Rosicka, Monika, Paweł Mazurek, Andrzej Grudka, and Michał Horodecki. “Generalized XOR Non-Locality Games with Graph Description on a Square Lattice.” ArXiv:1902.11053 [Quant-Ph], February 28, 2019.
    http://arxiv.org/abs/1902.11053.
  29. Ramanathan, Ravishankar, Michał Horodecki, Stefano Pironio, Karol Horodecki, and Paweł Horodecki. “Generic Randomness Amplification Schemes Using Hardy Paradoxes.” ArXiv:1810.11648 [Quant-Ph], October 27, 2018.
    http://arxiv.org/abs/1810.11648.
  30. Winczewski, Marek, Tamoghna Das, Karol Horodecki, Paweł Horodecki, Łukasz Pankowski, Marco Piani, and Ravishankar Ramanathan. “No Purification in All Discrete Theories and the Power of the Complete Extension.” ArXiv:1810.02222 [Quant-Ph], October 4, 2018.
    http://arxiv.org/abs/1810.02222.

panorma in mari via tua